Adverse drug reactions (AEs) and Monitoring of MDR and XDR Treatment (Oct 2012; UCT)

Keertan Dheda, MB.BCh, FCP(SA), FCCP, PhD (Lond), FRCP (Lond) Professor and Head: Lung Infection and Immunity Unit Division of Pulmonology & UCT Lung Institute, Department of Medicine,

email: keertan.dheda@uct.ac.za Conflict of interest: none

Overview

□ AEs to 2nd line drugs

- 1. How frequent are AEs
- 2. How do AEs differ by HIV status
- 3. Do AEs impact on outcomes

Monitoring of MDR and XDR treatment

1. What parameters can be used to assess response to treatment and what to monitor?

2. Frequency of AEs- MDR-TB

- Important: impact compliance and may cause serious morbidity or death
- □ AEs to second line drugs more frequent than 1st line drugs
- □ Very common:

73.3% in Tomsk, Russia 69,2% in Istanbul Turkey **Suspension of any drug:** Peru (14%), Multicentric study= 30%; Turkey 55%. Torun T, IJTLD, 2005 Shin SS, IJTLD, 2007 Nathanson E, IJTLD, 2004

Frequency of AEs- XDR-TB

- Study submitted- 115 patients with XDR-TB had AEs (Shean K and Pietersen E)
- AE's were graded according to severity [mild to moderate (grade 1-2) and severe (grade 3-5: drug stopped, lifethreatening or death)].
- □ 161 AEs were experienced by 67/115 (58%) patients
- 17/67(25%) patients required no intervention;
 24/67(35%) required modification of treatment,
 the offending drug was discontinued in 19/67(28%) of patients;
 reactions were life-threatening in 2/67(3.0%) and 6(9.0%) died.

2. Do AEs impact on outcomes (n= 115 from 3 Provinces)

All

HIV infected

HIV-uninfected

Mortality higher in those with severe AEs 13/28(46%) vs. 17/87(19.5%); p=0.004

Univariate and multivariate analysis of factors associated with mortality in 115 patients with XDR-TB

Factor		Univariate analysis			Multivariate analysis		
		Hazard	Ratio	P-value	Hazard	Ratio	P-value
		(95%CI)			(95%CI)		
Adv	erse event						
	Grade 3-5	2.39(1.14-4.9)7)	0.02	1.43(0.67-3.0)5)	0.35
	Grade 0-2	1			1		
Prev	vious MDR TB						
	Yes	3.27(1.32-8.0)3)	0.01	2.91(1.16-7.3	35)	0.02
	Νο	1			1		
6	month culture						
con	Version Yes	0.09(0.01-0.6	53)	0.02	0.10(0.01-0.7	47)	0.03
	Νο	1			1		

- □ No specific parameter predicted of who would get ADR
- Those with severe ADRs more likely to have had previous MDR-TB

2. ADRs by HIV status

- HIV-infected patients were more likely to die from a severe ADR compared to uninfected patients [5/6(83.3%) vs. 1/6(16.6%), p=0.01)]
- The type, frequency and severity of AEs was similar in HIV-infected and uninfected patients

Profile of drugs withdrawn

N (%)	Drug dosages used	No. of patients who were prescribed a specific drug as part of XDR-TB regimen n=115(%)	Withdrawn due to side effects N-=34(%)
Amikacin	15-20mg/kg/daily*	3(2.6)	1/34(2.9)
Ethionamide	15-20mg/kg/daily	66(57.3)	7/34(20.6)
Capreomycin	15-20mg/kg/daily*	104(90.4)	15/34(44.1)
Para-aminosalicylic acid	8g (400mg BD)	101(87.8)	8/34(23.5)
Terizadone/Cycloserine	500-750mg daily	104(90.4)	2/34(5.9)
Amoxicillin-clavulanate	375mg	65(56.5)	2/34(5.9)

Capreomycin

- Capreomycin was withdrawn in 15/104(14%) of patients
- Comprised 44% of total drug withdrawals- median of 73 days
- 6/13(41%) deaths in the severe group were ascribable to capreomycin-related AEs (renal failure in five patients and hypokalemia in one)- median of 14 days

Conclusion of AEs in XDR-TB

- Drug-associated AEs occur commonly with XDR-TB treatment, are often severe, frequently interrupt therapy, and negatively impact on culture conversion outcomes.
- Less toxic drugs and standardised strategies (including pre-treatment counselling, early detection, monitoring, and follow-up) are needed to optimally manage patients with XDR-TB

Aminoglycosides

- Can cause hypoK+, hypoCa++ and hypoMg++ (PCT cell affected- reversible)

- Clinical renal failure is rare

- Ototoxicity occurs in less than 5% of patients (not reversible and cumulative dose important)

- D/T oxidative damage and apoptosis of cochlear hair cells/ neurons and mitochondrial dysfunction- genetic mutation predisposes

May occur rapidly and within hours (high frequency)

- Vestibular cell toxicity is reversible

- ? asprin protective

- Need to decide on risk benefit ratio in the individual patients when deciding to stop AG because of renal impairment or ototoxicity (can also reduce the dose or give 3 to 5 times per week).

Can also check levels

- Should perform audiology tests monthly whilst on AG

	!"#\$%&'()%'*&+, - *	. &/''+0'' *' 11'' #23*	4" 020*2\$*5 \$% }2\$ +*
0	!'#\$%\$&#'(\$'\$()**	, - *.%\$/'(.) *.'(- ''+ 0'*.#%1- (2) + 3(*\$4 ('- + 5%6% '7'- +	8"('2-"\$1*)%'\$(+ + :)%#4 #%2+2'0+;#*)0≺'.6+ =>%?'(-4'0)+
	@6'\$(-4'0)+4\$% =%\$.'\$(-4'0)B+	, - *.%/'(.) *.'(- ''+ 0'*.#%1-(2) + + C) =\$.\$D'2'.>+ +	8"('2-"\$1*)%'\$(EF%9)(1>+ '('.'-">+*="'(7+0\$*)\$%(2%-*'(7+ 0\$*) $+0\%7+64 = '(7B+$ G#(0'2) $+1+*$)%44 + "-('()+ .%(*;)%*)+(0-1''''%41'(+
		C>=\$.6>%\$'0'*4 +	I6>%\$'0+*.'4#"'(7+6\$%4\$()+')9)'*+ A;%})+IJB+H+.+')-*.+K/4\$(.6'>+
	8>2'\$*) %()+∕\$% .) %?'0\$()B+	F *>26\$ *'*L+*) '?#%) *L+ =- % *.6) *'- L+0) =%) **'\$(+	8''('2- ''\$1*) %9 '\$(+++ '''⊨ ') (. *+\$+ %) 2) '9) ⊨%) 9) (. '9) ⊨>%0\$D() ++

+

Arthralgia- NSAIDS, anti-gout agents do not help

Cycloserine/ teridizone

- Seizures- well controlled epilepsy not a C/I, Exclude other causes of seizures by CT scan, LP etc, start anti-convulsant, reduce dose, pyridoxine, stop drug (FQ)
- Peripheral N (AG, C, INH, E, FQ)- increase dose of pyridoxine to 200mg, exclude other causes, use NSAIDS, TAD and gabapentin for pain, reduce dose or stop drug
- Psychosis: stop drug, use anti-psychotics if necessary, exclude other causes

!"#\$%&'()%'*&+, - *	. &/ " +0" *' 11" #23*	4"020*2\$*5 \$%)2\$+*
!"#'\$ "%&()"*&+*&-	3")4#(\$&45)4&"* <u>*</u> . &46#7"' <i>,</i> 5-	;*&&"*(7)5#≺"4&k'- -
",&-/!012-	8+9(4:+#(&&%-	=: +#(&-)4&6*'4&>-:(#%('5-*5<5*)- /?#55-=@EA-''4*5'')4B\$%('4:*+-
C& 5D(*&-	E+5*()699#5))&(- -	G6*≛7*((,(6'4-A-H55I*+-"4-?8#)4- 4:5'-%('4:*+-
	C',4&,-'',&()&,-	15#6%-*' <i>,</i> 4''45-*5<5* <u>-</u>
	!5# & 9:5#'* <u>'</u> 56#(9"4:+-	;*&&"*(7)5#<"4&('-
	!"' <i>, #</i> 5"4 848 ⊱ / 07.(%&'' <u>*</u> 9"&2-	;*&&"*"')5#6%-"%+*')5-")- &.&"45
	F94&-'56# 848 -	J&&&'-45)4&>-

PAS- use with food is fine for absorbtion, reduce dose, anti-emetics

2. Monitoring of ADRs

 Baseline: exclude neuropathy, perform eye test (ethambutol), HIV, pregnancy test, check LFT, creatinine, audiometry if using kanamycin, TFT (ethionamide, PAS)

2. What to monitor?

Capreomycin- Cr, Mg, K 2X monthly for 3 months then monthly

AG- Cr monthly, audiometry monthly ethionamide or PAS- TST 6 monthly,

LFTS- when clinically indicated or every 3 months if on PZA or pre-existing hepatitis

2. What parameters can be used to assess response to treatment?

- Symptoms: fever, night sweats, appetite, cough (all improved by 1 to 2 months)
- □ Signs: weight
- Blood tests: haemoglobin
- Imaging: chest x ray (lags behind clinical improvement; no data; 3 to 6 months should see significant improvement)

2. What parameters can be used to assess response to treatment and what to monitor?

- Monthly weight, smear and culture (if still culture positive after 4 to 6 months get 2nd line DST), neuropathy check
- CXR- baseline, 4 months, 6 months, 9 months and end Rx

Summary

- ADRs with second line drugs common
- Impact on outcomes
- Capreomycin must be monitored carefully
- Treat symptomatically, stop drug if required
- Consider risk benefit ratio
- Careful monitoring and counseling required
- Watch for treatment failure and assess HIV status, compliance, consider alternative diagnosis, consider surgery, and then possible XDR-TB treatment (heteroresistance)

Funding Agencies:

