Drug-resistant Tuberculosis: The urgent need for better, shorter and more tolerable treatment regimens

Helen Cox MSF

MEDECINS SANS FRONTIERES

DR-TB treatment scale up needed!

~650,000 prevalent cases globally

WHO TB Report Oct 2012

Current DR-TB treatment (WHO)

Group name	Anti-tuberculosis agent	Abbreviation
Second-line parenteral agent (injectable anti-tuberculosis drugs)	kanamycin amikacin capreomycin	Km Amk Cm
Fluoroquinolones	levofloxacin moxifloxacin gatifloxacin ofloxacin	Lfx Mfx Gfx Ofx
Oral bacteriostatic second-line anti- tuberculosis drugs	ethionamide prothionamide cycloserine terizidone <i>p</i> -aminosalicylic acid	Eto Pto Cs Trd PAS
Group 5 drugs	clofazimine linezolid amoxicillin/clavulanate thioacetazone clarithromycin imipenem	Cfz Lzd Amx/Clv Thz Clr Ipm

At least 4 second-line drugs likely to be effective
 Injectable drug for at least 8 months
 Total treatment duration at least 20 months

Evidence for current regimens...

- No randomised controlled trials
- Most drugs used off-label
- Most would not be approved for use under current regulatory requirements
- WHO recommendations for DR-TB treatment are all rated at "very low quality evidence"

Global DR-TB treatment outcomes

FIGURE 4.8 Treatment outcomes for patients diagnosed with MDR-TB by WHO region, 2009 cohorts.

The number of countries reporting outcomes for at least one case, followed by total cases with outcome data, shown beside each bar.

- ~30,000 enrolled on treatment in 2009
- Less than 50% treatment success globally and in African region
- High rates of death, failure and default throughout

WHO TB Report. Oct 2012

DR-TB treatment success in South Africa

Treatment success (%)

- Very poor outcomes overall
- High rates of mortality and default

Schaaf et al Trop Med Int Hith 1996, Shean et al IJTBLD 2008, Brust et al IJTBLD 2010, Farley et al PLoS One 2011, Odendaal et al PHA SA newsletter, Aug 2012, Khayelitsha DR-TB programme, O Donnel et al IJTBLD 2009, Kvasnovsky et al JAIDS 2011, NDOH data, reported 2011, Diacon et al AAC 2012, Brust et al IJTBLD 2012

Treatment default in Khayelitsha

- Default throughout treatment
- Injectable in first 6 months probably increases default
- Treatment fatigue is a major issue

Side effects of treatment

- Painful injections
- Hearing loss due to the injectable drugs (~30% of patients in some settings)
- Nausea and vomiting
- Kidney failure
- Psychiatric side effects (depression, paranoia)
- Hepatitis
- Peripheral neuropathy (tingling, numbness, pain)
- Side effects often additive with HIV drugs

Hearing loss with treatment

Treatment default: tolerability Tocsek et al Int J TB Lung Dis, in press

- Systematic review of DR-TB treatment outcomes specifically looking at default
- 75 studies, 18,294 patients, 31 countries
- Overall 15% default (range 1- 56%)
- Extremely heterogeneous
- Look at factors (programmatic level) predicting default

Intervention	Description	Studies	Patients	Defaulting (95% Cl)	p value
Regimen	Standardized	17	4289	9.30 (5.60, 13.00)	Ref
Regimen	Individualized	58	13826	— 16.60 (13.30, 19.90)	0.01
Regimen	Mixed	2	139	• 14.10 (8.50, 19.90)	0.16
DOT	None	10	3352	26.20 (15.50, 37.00)	Ref
DOT	Partial	24	6635	16.90 (12.00, 21.90)	0.12
DOT	Always	36	7635	12.10 (9.40, 14.80)	0.01
Dot Provider	Health care worker	22	6069	18.10 (13.50, 22.70)	Ref
Dot Provider	Family/CHW	9	954	6.10 (2.10, 10.00)	<0.001
Dot Provider	Mix	17	2345	9.60 (6.70, 12.40)	<0.001
DOT location	Facility	36	9845		Ref
DOT location	Home/mixed	23	4010	 8.90 (6.40, 11.40)	0.03
Education	No/not stated	68	16799		Ref
Education	Yes	10	1495	9.30 (5.20, 13.30)	0.03
Cohort size	<100	40	1582		Ref
Cohort size	100-499	25	6055	15.30 (11.80, 18.80)	0.07
Cohort size	500-999	8	4857	18.70 (9.50, 27.90)	0.13
Cohort size	>1000	5	5800	24.50 (14.80, 34.20)	0.005
Counselling	No	62	15492	 15.10 (12.10, 18.10)	Ref
Counselling	Yes	16	2802		0.7
Legal action	Yes	5	2421	12.30 (1.50, 23.10)	Ref
	No	73	15873	 15.10 (12.40, 17.80)	0.62

						P
Intervention	Description	Studies	Patients		Defaulting (95% CI)	value
Regimen	Standardized	17	4289 -		9.30 (5.60, 13.00)	Ref
Rement	ardef	anlt	13826	<u> </u>	16.60 (13.30, 19.90)	0.01
Regimen	Mixed		139	<u> </u>	14.10 (8.50, 19.90)	0.16
DOT	None	10	3352		26.20 (15.50, 37.00)	Ref
DOT	Partial	24	6635		16.90 (12.00, 21.90)	0.12
Ctor	Alw ys	36	7635	mont	12.10 (9.40, 14.80)	0.01
JLd	Idald	seu	ueau	nent	18.10 (13.50, 22.70)	Ref
Dot Provider	Family/CHW	9	954		6.10 (2.10, 10.00)	< 0.001
Dot Provider	Mix	17	2345		9.60 (6.70, 12.40)	<0.001
DOT location	Facility	36	9845		17.30 (13.40, 21.30)	Ref
тех	Lible		prov	vider and	location	0.03
Education	No/not stated	68	16799		15.60 (12.80, 18.40)	Ref
Education	Yes	10	1495 -		9.30 (5.20, 13.30)	0.03
Cohort size	<100	40	1582		11.30 (8.70, 13.90)	Ref
Sma	aller c	oho	rts (no	ot good fo	or treatme	nt
Solarteize	>1000	5	5800		- 24.50 (14.80, 34.20)	0.005
Counselling	÷,,up)	62	15492	<u> </u>	15.10 (12.10, 18.10)	Ref
Counselling	Yes	16	2802	<u> </u>	14.00 (9.10, 18.90)	0.7
Legal action	Yes	5	2421		12.30 (1.50, 23.10)	Ref
Legal action	No	73	15873	<u> </u>	15.10 (12.40, 17.80)	0.62
			0	1 I I 10 20 30	40	

We need a new regimen!

- Some new drugs are close to approval
- Do we wait for an entirely new regimen?
- Conventional approach 20+ years
- Drug combination approach half this, but still too long
- Or use combination of new, existing and re-purposed drugs to develop our 'best guess' regimen
- Both short term and long term goals are needed

Which drugs to choose?

New:

- Bedaquiline (TMC207)
- OPC-67683 (Delamanid)
- PNU-100480
- SQ-109
- PA-824

Re-purposed:

- Linezolid
- Clofazamine
- High dose INH

Existing:

- Fluoroquinolones
- Injectables
- Ethionamide
- Terizidone
- PAS

Existing drugs: Individual patient meta analysis

Ahuja et al PLoS Medicine 2012

- 9,000+ MDR-TB patients
- Range of settings and treatment strategies

Choice of drugs?	Odds ratio – success vs fail/rel/death/def
Kanamycin vs capreomycin	1.3 (1.1-1.6)
Kanamycin vs no injectable	1.3 (0.7-2.5)
Capreomycin vs no injectable	1.1 (0.4-3.2)
Later gen FLQ vs no FLQ	2.8 (1.3-6.1)
Later gen FLQ vs Oflox	2.1 (1.2-3.9)
Ethionamide	1.7 (1.5-2.0)

Pyrazinamide susceptibility: shorter treatment?

- PZA enables shortening of first-line TB treatment
- Potential synergistic activity with existing and new TB drugs
- Improved cult conversion with phenotypic PZA susceptibility
- May enable shortening of DR-TB regimens (if susceptible)

Zhang et al Emerg Mic and Inf 2012

Re-purposed drugs: Clofazimine (mouse data)

*Mouse TB infection model: aerosol infection, 2-week before Rx, 4 weeks of treatment

TB Alliance 2011

The Bangladesh regimen (clofazimine)

Short, Highly Effective, and Inexpensive Standardized Treatment of Multidrug-resistant Tuberculosis

Armand Van Deun^{1,2}, Aung Kya Jai Maug³, Md Abdul Hamid Salim³, Pankaj Kumar Das³, Mihir Ranjan Sarker³, Paul Daru³, and Hans L. Rieder^{1,4}

¹International Union Against Tuberculosis and Lung Disease, Paris, France; ²Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; ³Damien Foundation Bangladesh, Dhaka, Bangladesh; and ⁴Institute of Social and Preventive Medicine, University of Zurich, Switzerland

Most successful regimen:

- Intensive phase (4 months min): Gfx, Cfz, EMB, PZA, Proth, Kan, high dose INH
- Continuation phase: Gfx, Cfz, EMB, PZA
- Total duration 9 months min
- 88% treatment success

Am J Respir Crit Care Med Vol 182. pp 684–692, 2010 Originally Published in Press as DOI: 10.1164/rccm.201001-0077OC on May 4, 2010 Internet address: www.atsjournals.org

A randomised controlled trial of high-dose isoniazid adjuvant therapy for multidrug-resistant tuberculosis

Int J TB Lung Dis 2008

S. K. Katiyar,* S. Bihari,* S. Prakash,** M. Mamtani,* H. Kulkarni*

* Department of Tuberculosis & Respiratory Diseases, Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur, [†] Lata Medical Research Foundation, Nagpur, India

Linezolid for complicated DR-TB: systematic review

Cox & Ford, Int J TB Lung Dis, 2012

Linezolid for chronic XDR-TB: clinical trial Lee et al NEJM 2012

- 38 XDR-TB patients
- Previously unresponsive to treatment
- 87% culture conversion within 6 months
- 82% sig AEs
- 300 mg daily may be acceptable

Key principles for a new regimen

- At least one new class of drug
- Minimum 3 effective drugs?
- Not combining drugs of the same class
- No injectables?
- Broad backbone that can be used for MDR and XDR
- Simple dosing
- Limited side effects
- Shorter duration (6-9 months?)
- Minimal interaction with ART

Regimen options?

- Need to start treatment on Rif resistance result only
- Start with strong regimen containing more drugs than will be needed
- Change treatment when further DST results become available (phenotypic and genotypic)
- Easier to withdraw drugs than to add

??? Bedaquiline, Delamanid, Moxifloxacin, Clofazimine, Pyrazinamide, high dose Isoniazid, (Linezolid, ethionamide?)

Pragmatic trials required

- Pharmaceutical companies design trials to get their own new drugs registered.
- They are not primarily interested to design a new regimen
- Therefore the regimens that are tested in clinical trials are often not the most practicable in high burden, programmatic settings

Potential trade-offs?

	Benefits	Trade-offs
Shorter duration	Reduced defaultEasier monitoringDecreased cost	Reduced efficacy Increased relapse
No injectable	 Improved tolerability and default Less adverse events Easier health service implementation Decreased cost 	Reduced efficacy?
More than one potentially cardiotoxic drug	Increased efficacy Overall improved survival	Potential risk of sudden death in a few

Overall impact...

Current: ~10,000 deaths/year

Better regimen: ~5,000 deaths/year

Concurrent approaches required

Summary

- Current treatment not good enough
- Regimen change is urgently needed
- New drugs are close to available
- Need to use these new drugs in the best possible regimens that take into account tolerability and duration in addition to efficacy
- Pragmatic clinical trials that reflect programmatic conditions are needed

Keeping things in perspective...

"With no controlled trials, to base therapy on anecdotal treatment successes with linezolid could be dangerous"

Chang et al Lancet Infect Dis July 2012

"...trials are rarely conducted in conditions that genuinely reflect programmatic conditions" Nunn Int J TB Lung Dis 2010

Acknowledgments

- Khayelitsha DR-TB programme
- Contributed to this presentation:
 Grania Brigden, Nathan Ford, Eric Goemaere, Jennifer Hughes, Lynne Wilkinson, Mara Kardas-Nelson

